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A control system, subject to a positional control obtained by "cutoff" 
of the output delivered by a lineax regulator based on the magnitude of 
geometrical constraints, is investigated for asymptotic stability. The 
size of the domain of attraction of the equilibrium position of a 
dynamical system with "cutoff" control is estimated. Necessary and 
sufficient conditions are derived under which the domain may be made as 
large as desired by suitable choice of the paraaeters of a quadratic 
integral functional. 

The design of a time-optimal constrained positional (and even programmed) control which 
will steer a dynamical system to the origin becomes very difficult in systems with many 
dimensions /l/. Many authors have therefore proposed non-optimal control laws, which pever- 
theless enable the problem to be solved within an acceptable time /2-41. Fairly sophisticated 
methods are now available for the design of optimal analytical regulators /l, 5-7/; these 
methods guarantee asymptotic stability of the system in a given position /5-101. The control 
- a linear function of the phase coordinates with a constant feedback matrix - is determined 
by minimizing a certain quadratic integral functional. However, this control may not satisfy 
additionally specified geometrical constraints in a certain domain of phase space. Necessary 
and sufficient conditions for a positional control to be optimal in a geometrically con- 
strained problem have been developed /5/, but only for systems with relatively few dimensions 
can one actually construct the control. A common solution to this problem is to use "cutoff"- 
type controls; but then the domain of attraction of the equilibrium state has not been 
determined in the general case. The stability of non-linear control systems with a fixed 
type of non-linearity has been analysed /8, 91. 

7. Statement of the problem. Consider a completely controllable /l/ dynamical system 

I' = fix + Gu, rank11 C, FG, FG, . . ., F"-1GII = n (1.1) 

Here xEIi" is the phase vector, F and G are constant matrices, UE R" the vector 
of controls. The initial position r0 of system (1.1) at time t =0 is given. A positional 
control under which the trivial solution x(1) = 0 of system (1.1) is asymptotically stable 
in the large fll/ is found by minimizing a certain quadratic functional: 

1 (.Q) = Inin, f(zrAr + UT&)& 
0 

(1.2) 

where A and B are constant positive definite symmetric matrices. 
It is known /lo/ that J&J is a quadratic function of the initial phase state 

J (x*) = s,TSz, 

where S is a symmetric positive definite matrix satisfying the algebraic Riccati equation 

SRS=SFfPTS+A, RsGB-'GT (1.3) 

It follows from the results in /6, 7/ that in the case of a completely controllable 
system (1.I) the Riccati equation is always solvable, an4 there is in fact an algorithm which 
computes the solution 171. 
formula /l/: 

An optimal control minimizing (1.2) is defined by the following 

U(X) = -B-'G=Sx (1.4) 

Let us assume that the control in system (1.1) is subjected to an additional restriction 

Consider the control 
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U* (I) =- -PG*Sx if 1 B-lG*Sx 1 < 1 (l.ti) 

U* @) = -FC7Sz 1 B-rGTSz 1-l if 1 BPGTSZ 1 > 1 

The reader may convince himself that controls of this type need not be optimal for 
problems involving a functional (1.2) and a geometrical constraint (1.5). Hence such con- 
trols do not even guarantee convergence of the integral (1.2) or, consequently, asymptotic 
stability in the large of the control system (1.11, (1.6). Our aim in this paper is to work 
out an estimate of the domain of attraction /ll/ of the trivial solution z(t) = U of system 
(1.1) with cutoff control (1.6) and to determine the conditions under which the size of this 
domain may be increased without limit by suitable choice of the parameters in the functional 
(1.2). 

2. Main results. Suppose we are given two quadratic forms, defined by the matrices L, 
and I,?. We shall say that L,<L,, if xTL,z<xTL1x for all X. 

Lemma 1. Consider the control system (1.1) with functional (1.2). Let Snz) be the 

solution of the RiccatiEq.(1.3) corresponding to the matrix Al(z). If A, > AZ, then S, > S". 

Proof. Let u1(2) (U be a programmed control of system (1.1) minimizing the functional 
(1.2) for the quadratic form with matrix A,(,), and add the corresponding trajectory of 

the system, 51@) (0) = 50. The assertion of the lemma follows from the following chain of 

relations: 

1 (rzT~arZ -(- uaTBua) dl -= roTA&, 

For another proof of this lemma see /12/. 

Lemna 2. Let S be the solution of the Riccati Eq.(1.3) corresponding to system (1.1). 

Then 
1imS = 0 as A+0 (2.1) 

if and only if, for all eigenvalues h, of the operator F in (1.11, it is true that Rehi QO. 

Proof. Sufficiency. Throughout the proof, 1imS will be considered only as A-0. In 
our notation for the limit or the expression S-O we shall therefore always omit the con- 
dition A-O. Let 0 be a non-singular complex matrix. We shall use the following notation: 

zw = O-'i, F, = e-'Ftl, s, = O'SO, 

A, =O*AO, Gs .== 0-w ( IjN = lpGB-l~“&l* 

and choose 0 so that the matrix F, is in Jordan normal form (the asterisk denotes trans- 
position plus complex conjugation). Eqs.(l.l) remain formally the same written in terms of 

the variables ~N,FN,GN. Let us assume that the matrix F, has r Jordan blocks along the 
principal diagonal, the I-th block (l= i,...,r) being an nl X n1 matrix of the form 

11 h, 1 0 . 
O II 

(2.2) 

where E “I iS the nl X nr identity matrix and I',,, the n, X nl matrix with ones above the 

principal diagonal and zeros everywhere else. Let L,j denote the ii element of a matrix L. 
Thus 

(If,l)ij = 1 if i = j - 1, (Ikl),, = 0 if i+j- t (2.3) 

(I',:)il = A if j=i--1, (Itt)i,=O if j+i__1 

We first make the following observation. Let i,> 1 &, ., iakta, be the indices of the 

rows in F, corresponding to the last rows of the Jordan blocks (2.2) with eigenvalues X, and 

k (a) the number of these blocks. Let 6"s be the submatrix of Gw formed by the rows with 

these same indices GL,, ‘a,. 11 4zk(a). It follows from the results of /13/ that the system is 

completely controllable if and only if 
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rank Gf*N = k (a), a = 1, 2, . . (2.4) 

In terms of the variables S,,A,,R,, the Riccati Eq.(1.3) takes the following form 
(from now on, throughout this proof, we omit the index "N"): 

SRS=F*S+SF+A, REGB-‘G* (2.5) 

Here S, A, R are selfadjoint matrices; S and A are positive definite and R is positive 
semidefinite. 

We begin with the simplest case of F, proving (2.1) on the assumption that ileA for 
any 2. Let r= 2 and nl= np, I= 1,2,2n,= n. Thus, F has two complex-conjugate Jordan blocks 
along its principal diagonal, belonging to eigenvalues h, and &=X1. Let S, be the i-th 
column of S. Then, using (2.3), we can write out the matrix Eq.(2.5) for the ij-th element 
of the matrices on its left and right: 

St RSj = Sij (h, +X,) m: Sij_l f Si_,j ,- Aij (2.6) 

Note that when 1 Q i,j< n, we must take p= q=l and omit any terms S,, and S,j that may 
appear on the right. When nl+l< i,j< n we must take p= q= 2 and omit any terms s"lj* ‘in, 

on the right. When 1 < i $ %, n, + 1 < j -S ?I we take p= 2,q= 1 and omit terms Sin,. s,j , if 
they appear second or third on the right of (2.6). 

By assumption, Reh, < 0. There are twopossibilities:Hoh,< 0 and Rob,= 0. Let Reh,<n. 
Then it follows from Eq.(2.6) with i=j= 1 that 

SI*RSI = 2S,, Re h, + A,, 

where R is a positive semidefinite matrix and me a, < 0. Hence, as A-0 we have S,, - 0, 
and by Sylvester's criterion for S to be positive definite and the fact that this matrix is 
bounded (see Lemma l), we have S,j,Sjt+O. When i,j=Z Eq.(2.6) gives 

S,'RSa+ 2&z (--RCA,) = S,,+ S,, + A,, 

As the right-hand side of this equality tends to zero and each term here is non-negative, 
each term on the left tends to zero, i.e., s,, - n and Sw3Sj2 *O, and so on for all indices 
i, j = 3; ‘, - 1 I - 4; .; i, 1 - n. Note that we have proved the equality s,, .- 0 for any index i such 
that the corresponding eigenvalue has a negative real part. 

Let Rex,== 0 and Imh,#O. Eq.(2.6), written out for i-l, has the form (S,, = 0) 

S,*RSj = S,j_l+ A,j, 1 < j C< nl (2.7) 

This equation with j- 1 gives S,*RS,-rO. Hence, since SRS is positive semidefinite and 
S is bounded, we obtain S,*RS, -+ 0,J - 1, 2, . . ., n. Eq.(2.7) with j= 2 gives S,,- 0 and 

S,j,Sj,- 0, j = 1, 2,. ., n (2.8), 

since S is positive definite and bounded, Eq.12.6) with i= 2 gives the following equation 
(S,, must be omitted - see the explanations to formula (2.6)): 

S,*RSj = S,j_l + S,I + Azj, j = 1, 2, ., 111 

Hence, putting j= 2 and using (2.8), we obtain S,*RS2-0, and so 

S,‘RS1 .-. 0, j = 1, 2, . ., n (2.9). 

Eq.(2.6) with i= 2,j= 3 gives 
S,'R& = S,, + S,, + A,, 

Hence, by (2.8), (2.91, it follows that S,,+O and 

hi - 0, j=i,2 ,..., n 

Reasoning in this way for i,j= 2,3,4,...,n,, we conclude that for I< nl- 1 uj.< nl- 1 
SC! - 0 (2.10) 

For r,j= nl , we deduce from Eq.(2.6) that 

S,,,*RS,,= Sn,n,-r + S,,-,,,, t An,,, 
By (2.10), this equation implies S,,,*RS,, -0, and so 

S,*‘RS, -.O, i < nlUl < n1 (2.11) 

Our proof of (2.10) and (2.11) has used only the following properties of the left-hand 
side of system (2.6): the fact that SRS is bounded and positive semidefinite, and the fact 
that S is bounded and positive definite. These properties follow from the definition of S 
(1.2) and Lemma 1. The group of Eqs.(2.6), considered for 1s i,j< "I "links up" with Eqs.(2.6) 
for n,+ i 4i,jC n only through the left-hand side; but the above properties of the left-hand 
side are independent of the number of Jordan blocks. Similar arguments will therefore prove 
that if ~-t- I< i, j< n, then S,*RS, - 0. Together with (2.11), that gives SRS-0. Recalling 
that B is positive definite and using the definition of R (2.5), we finally obtain 

SG+0 (2.12) 
Reasoning as in the proof of (2.10), we see that for i#n,,npj#n,,n 

S,, - 0 (2.13) 
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Putting i= R, and j= n, we deduce from (2.6) that 

S,,*RS,, = S,,, (XI -;G) + Sri,,,____ S,+rn + A,,, (2.14) 

The left-hand side of this equality goes to zero because of (2.12); S,,,,_,, S,,_,,+O by 

formula (2.13). By assumption, h,+ i;,# 0. Therefore, 

S "",' S,,, - 0 (2.15) 

Using formulae (2.13) and (2.15), we can now write out (2.12) for the nl-th row, and the 
result is 

S ,,*11, 0 G,,,,, %,,. . .o %,,# II - 0 
and similarly for the n-th row. By condition (2.4), there is at least one non-zero component 
in the n,-th row of the control matrix G. Therefore S,,l,,, and, similarly, S,,-0. We have 

thus proved (2.1) for Reh, = 0, Imh,#O. 
Let Imh,=Reh,=O, i.e., we have to Jordan blocks with zero eigenvalues. In that case 

(2.12), (2.13) remain valid. It follows from (2.12), in view of (2.13), that 

(2.16) 

By the complete controllability condition (2.4), the second matrix in this product is of rank 
two, hence the first matrix must also tend to zero. Together with condition (2.13), this 
proves formula (2.1) for a matrix F with two Jordan blocks. 

The idea of the proof for an arbitrary matrix F is exactly the same. No further arguments 
are necessary to establish formulae like (2.12) and (2.13). A formula of type (2.15) is 
clearly valid for any indices such that the sum of eigenvalues in parentheses in (2.14) does 
not vanish. Suppose, then, that the sum in question does vanish. Then, since Re&<O,I= 1, 
2, ., r, this means that the relevant indices i, j correspond to the last rows of Jordan 
blocks (2.2) with identical pure imaginary eigenvalues. We now use the complete control- 
lability condition (2.4) and (2.12). These conditions imply an expression of type (2.16), 
with the indices n,.rz in the first matrix replaced by the indices of the last rows of the 
Jordan blocks belonging to the eigenvalues in question. The number of columns in this matrix 
equals the number of appropriate Jordan blocks and is equal to the rank of the second matrix 
in (2.16), by the complete controllability condition (2.4). Therefore all the elements of 
the first matrix tend to zero. Together with the formula of type (2.13) for the other indices, 
this completes the "sufficiency" part of the proof of Lemma 2. 

Necessity. Suppose that for some i we have Reh,> 0. We assert that then S cannot be 
made as small as desired by choosing A (1.2). Indeed, otherwise, (2.1) would again by true. 
The stabilizing control is related to S by formula (1.4). This means that for any fixed 
initial position .zO the optimal control u(t) (in the sense of the criterion (1.2)) may be 
made as small as desired uniformly with respect to all t= (0,~). Let the matrix F in (1.1) 
be brought to Jordan normal form by a non-singular transformation and suppose that the equation 
of motion for some k, corresponding to the last row of a Jordan block (2.2) with Reh>O, is 

zh_' = hzi, + (Cl&, Re h> 0 (2.17) 

Let us assume, for simplicity, that u is a scalar and G a vector. Then, by the complete 
controllability condition (2.4) for system (l.l), we have Gk#O. Using Cauchy's formula to 
solve Eq.(2.17) (omitting the index k from now on), we have 

t 
I (1) = P exp (ht) -C 1 exp (hr) Gu (r) dt 

0 

Separating the real and imaginary parts, we obtain 

It follows from this equality that if 

h, [L,Of + IBO~]"~ > [g,* + g,+ 

then there exists no control u (7) which, on the one hand, guarantees that the solution of 
Eq.(2.17) will tend asymptotically to zero and, on the other, satisfies the constraint 1 u(r)1 4 
1 for all t. Thus, if Reh,>O the stabilizing control cannot be made as small as desired, 
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contrary to our assumption that the matrix S can be reduced as much as desired. 

Lem 3. The set of initial values 

I 30 I Q 2 II B-w 11-I II S 11-l (2.18) 

belongs to the domain of attraction of the equilibrium position 0 of system (1.1) with control 
(1.6). 

Proof. Consider the form (z*S=). along trajectories of system (1.1) under the control 
(1.6). If I B-'G~szI <i, then @+‘s%). < 0 by the definition of S (1.21. 

Let [8-~GTS~j>l. After some simple reduction using Eq.(1.3), we obtain 

(~Ts*).=~~(sGB-IG~s-A-~~sGB-~G~s)B-~GTsII-I)~ 

It is obvious that a sufficient condition for the quadratic form on the right of this 
equality to be negative definite on trajectories of system (1.1) with control (1.6) is that 

22 i E-Wsz~ (2.19) 

Let z0 be the position of system (1.1) at time to_ We have ~'Sz<r,~Ss, at t>t, on 
solutions of system (l.l), because of the inequality (2T‘ss). < 0. It can be shown that 

max, I Sa 1 = (11 s 11 *o?‘sro)‘~‘, ZTSZ q “o’sIo 

Thus inequality (2.18) is a sufficient condition for inequality (2.19) to hold. 
Note that the estimate i zo i<jl B-l@ /l-lj/ sil-’ f or the domain of attraction of the equilib- 

rium position 0 of system (1.1) follows immediately from (1.4) and (1.5). 
By Lemmas 1 and 2, the domain (2.18) may be made as large as desired provided that the 

condition Rehi-<O holds for all eigenvalues of F. Hence we obtain the following theorem. 
Let system (1.1) be completely controllable and let Rehi<O for all its eigenvalues. 

Then for any bounded set of initial positions x0 there exists a matrix A of the functional 
(1.2) guaranteeing that the set will be a subset of the domain of attraction of the equilibrium 
position 0 of system (1.1) with control (1.6). 

Remark. Let ~eiia>~ for some k. In the necessity part of the proof of Lemma 2 it was 
shown that then, for any positional control a (z) satisfying the constraint (l-5), the phase 
space will contain points that do not belong to the domain of attraction of the equilibrium 
position 0 of the system. 
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